Minimum Information Dominating Set for Opinion Sampling
نویسندگان
چکیده
We consider the problem of inferring the opinions of a social network through strategically sampling a minimum subset of nodes by exploiting correlations in node opinions. We first introduce the concept of information dominating set (IDS). A subset of nodes in a given network is an IDS if knowing the opinions of nodes in this subset is sufficient to infer the opinion of the entire network. We focus on two fundamental algorithmic problems: (i) given a subset of the network, how to determine whether it is an IDS; (ii) how to construct a minimum IDS. Assuming binary opinions and the local majority rule for opinion correlation, we show that the first problem is co-NP-complete and the second problem is NP-hard in general networks. We then focus on networks with special structures, in particular, acyclic networks. We show that in acyclic networks, both problems admit linear-complexity solutions by establishing a connection between the IDS problems and the vertex cover problem. Our technique for establishing the hardness of the IDS problems is based on a novel graph transformation that transforms the IDS problems in a general network to that in an odd-degree network. This graph transformation technique not only gives an approximation algorithm to the IDS problems, but also provides a useful tool for general studies related to the local majority rule. Besides opinion sampling for applications such as political polling and market survey, the concept of IDS and the results obtained in this paper also find applications in data compression and identifying critical nodes in informa-
منابع مشابه
Semidefinite relaxation for dominating set
‎It is a well-known fact that finding a minimum dominating set and consequently the domination number of a general graph is an NP-complete problem‎. ‎In this paper‎, ‎we first model it as a nonlinear binary optimization problem and then extract two closely related semidefinite relaxations‎. ‎For each of these relaxations‎, ‎different rounding algorithm is exp...
متن کاملSome Results on the Maximal 2-Rainbow Domination Number in Graphs
A 2-rainbow dominating function ( ) of a graph is a function from the vertex set to the set of all subsets of the set such that for any vertex with the condition is fulfilled, where is the open neighborhood of . A maximal 2-rainbow dominating function on a graph is a 2-rainbow dominating function such that the set is not a dominating set of . The weight of a maximal is the value . ...
متن کاملSome results on the energy of the minimum dominating distance signless Laplacian matrix assigned to graphs
Let G be a simple connected graph. The transmission of any vertex v of a graph G is defined as the sum of distances of a vertex v from all other vertices in a graph G. Then the distance signless Laplacian matrix of G is defined as D^{Q}(G)=D(G)+Tr(G), where D(G) denotes the distance matrix of graphs and Tr(G) is the diagonal matrix of vertex transmissions of G. For a given minimum dominating se...
متن کاملMixed Roman domination and 2-independence in trees
Let $G=(V, E)$ be a simple graph with vertex set $V$ and edge set $E$. A {em mixed Roman dominating function} (MRDF) of $G$ is a function $f:Vcup Erightarrow {0,1,2}$ satisfying the condition that every element $xin Vcup E$ for which $f(x)=0$ is adjacentor incident to at least one element $yin Vcup E$ for which $f(y)=2$. The weight of anMRDF $f$ is $sum _{xin Vcup E} f(x)$. The mi...
متن کاملk-TUPLE DOMATIC IN GRAPHS
For every positive integer k, a set S of vertices in a graph G = (V;E) is a k- tuple dominating set of G if every vertex of V -S is adjacent to at least k vertices and every vertex of S is adjacent to at least k - 1 vertices in S. The minimum cardinality of a k-tuple dominating set of G is the k-tuple domination number of G. When k = 1, a k-tuple domination number is the well-studied domination...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1405.5572 شماره
صفحات -
تاریخ انتشار 2014